Fundamental Group

Andrews University // Anthony Bosman

- 1. Show that composition of paths satisfies the following cancellation property: If $f_0 \cdot g_0 = f_1 \cdot g_1$ and $g_0 = f_0$, then $g_1 = f_1$.
- 2. Show that the following three conditions are equivalent:
 - a. Every continuous loop $f: S^1 \to X$ is homotopic to a constant loop.
 - b. Every continuous $f: S^1 \to X$ extends to a continuous $g: D^2 \to X$. That is, g restricted to the boundary of the disk should agree with the map f.
 - c. $\pi_1(X, x_0) = 0$ for all $x_0 \in X$.

Bonus Problems:

3. A corollary of Borsuk-Ulam states that if you cover the sphere S^2 with three closed sets $A_1,\ A_2,\ A_3$, then one of the sets contains a pair of antipodal points. To prove this, introduce the functions $d_i:S^2\to\mathbb{R}$ defined by $d_i(x)$ the minimum distance from x to some point of A_i . (Hence, $d_i(x)=0$ if and only if $x\in A_i$.) Now consider the function $D:S^2\to\mathbb{R}^2$ defined by $D(x)=(d_1(x),d_2(x))$. Complete the details of the proof.

Note: Similarly, if you cover the circle S^1 with two closed sets, then one of those sets will contain a pair of antipodal points. (Try it!) You can extend this result to higher dimensions, too.

4. Can you describe the fundamental group of the torus?

